Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.776
Filtrar
1.
Histochem Cell Biol ; 157(2): 195-204, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34807301

RESUMO

The stomach has diverse functions other than gastric acid secretion. Multifaceted studies have investigated age-related changes of the gastrointestinal tract. Nevertheless, little is known about estrogen production changes in gastric parietal cells in rats aged over 3 months. We investigated age-related changes in gastric estrogen synthesis and the accompanying changes in liver estrogen receptor from 3 to 24 months. Weights of the body, stomach, and liver increased linearly from 3 to 18 months, then maintained a constant proportion up to 24 months. The gastric mucosa area (in mm2/1 mm muscularis mucosa) showed a constant proportion throughout the rats' life. The population of parietal cells immunostained area with H+/K+-ATPase decreased gradually with advancing age. Cells that were immunopositive to aromatase antibody were observed at 3-24 months. The expressions of aromatase mRNA and its protein were somewhat lower at 18 and 24 months than at 3 months. The portal venous estradiol concentration at 12 months was 1.5 times higher than that at 3 months, and that at 18 months was a half of that at 3 months. The expression of estrogen receptor mRNA in the liver at 18 and 24 months was about 80% of that at 3 months. Results suggest that the gastric estrogen production declines with aging, and the liver estrogen receptor is also affected accordingly. Simultaneously, the gastric mucosa continues to express aromatase to maintain liver function(s) throughout the animal's life.


Assuntos
Estrogênios/biossíntese , Mucosa Gástrica/metabolismo , Células Parietais Gástricas/metabolismo , Fatores Etários , Animais , Masculino , Ratos , Ratos Wistar
2.
Theriogenology ; 180: 17-29, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34933195

RESUMO

The circadian system performs an important role in mammalian reproduction with significant effects on hormone secretion. Nuclear receptor subfamily 1 group D member 1 (NR1D1) functions as a transcriptional repressor in the circadian system and affects granulosa cells (GCs), but how it regulates estrogen synthesis has not been clarified. We investigated the effect of NR1D1 on estrogen synthesis and found that NR1D1 was highly expressed in GCs, mainly in cell nuclei. Additionally, the expression of NR1D1 and estrogen synthesis key genes CYP19A1, CYP11A1 and StAR showed rhythmic changes in porcine ovarian GCs. Activation of NR1D1 enhances its ability to inhibit the transcriptional activity of CYP19A1 by binding to the RORE on the CYP19A1 promoter, resulting in a decrease in estradiol content. Interference with NR1D1 can eliminate the transcriptional inhibition of CYP19A1 and promote the synthesis of estradiol. The results suggest that the hormone secretion of the ovary itself is also regulated by the biological clock, and any factors that affect the circadian rhythm can affect the endocrine and reproductive performance of sows, so the natural rhythm of sows should be maintained in production.


Assuntos
Enzima de Clivagem da Cadeia Lateral do Colesterol , Estradiol , Células da Granulosa , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Animais , Estradiol/biossíntese , Estrogênios/biossíntese , Feminino , Células da Granulosa/metabolismo , Regiões Promotoras Genéticas , Suínos
3.
Commun Biol ; 4(1): 1364, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876651

RESUMO

Mammals receive body energy information to maintain energy homeostasis. Ghrelin, insulin, leptin and vagal afferents transmit the status of fasting, blood glucose, body fat, and food intake, respectively. Estrogen also inhibits feeding behavior and lipogenesis, but increases body fat mass. However, how blood triglyceride levels are monitored and the physiological roles of estrogen from the perspective of lipid homeostasis remain unsettled. Here, we show that stomach secretes estrogen in response to the blood triglyceride levels. Estrogen-secreting gastric parietal cells predominantly use fatty acids as an energy source. Blood estrogen levels increase as blood triglyceride levels rise in a stomach-dependent manner. Estrogen levels in stomach tissues increase as blood triglyceride levels rise, and isolated gastric gland epithelium produces estrogen in a fatty acid-dependent manner. We therefore propose that stomach monitors and controls blood triglyceride levels using estrogen, which inhibits feeding behavior and lipogenesis, and promotes triglyceride uptake by adipocytes.


Assuntos
Estrogênios/biossíntese , Estômago/metabolismo , Triglicerídeos/sangue , Animais , Feminino , Masculino , Ratos , Ratos Wistar
4.
Drug Metab Dispos ; 49(12): 1047-1055, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34593616

RESUMO

Exemestane (EXE) is a hormonal therapy used to treat estrogen receptor-positive breast cancer by inhibiting the final step of estrogen biosynthesis catalyzed by the enzyme aromatase. Cysteine conjugates of EXE and its active metabolite 17ß-dihydro-EXE (DHE) are the major metabolites found in both the urine and plasma of patients taking EXE. The initial step in cysteine conjugate formation is glutathione conjugation catalyzed by the glutathione S-transferase (GST) family of enzymes. The goal of the present study was to identify cytosolic hepatic GSTs active in the GST-mediated metabolism of EXE and 17ß-DHE. Twelve recombinant cytosolic hepatic GSTs were screened for their activity against EXE and 17ß-DHE, and glutathionylated EXE and 17ß-DHE conjugates were detected by ultra-performance liquid chromatography tandem mass spectrometry. GST α (GSTA) isoform 1, GST µ (GSTM) isoform 3 and isoform 1 were active against EXE, whereas only GSTA1 exhibited activity against 17ß-DHE. GSTM1 exhibited the highest affinity against EXE with a Michaelis-Menten constant (KM) value that was 3.8- and 7.1-fold lower than that observed for GSTA1 and GSTM3, respectively. Of the three GSTs, GSTM3 exhibited the highest intrinsic clearance against EXE (intrinsic clearance = 0.14 nl·min-1·mg-1). The KM values observed for human liver cytosol against EXE (46 µM) and 17ß-DHE (77 µM) were similar to those observed for recombinant GSTA1 (53 and 30 µM, respectively). Western blot analysis revealed that GSTA1 and GSTM1 composed 4.3% and 0.57%, respectively, of total protein in human liver cytosol; GSTM3 was not detected. These data suggest that GSTA1 is the major hepatic cytosolic enzyme involved in the clearance of EXE and its major active metabolite, 17ß-DHE. SIGNIFICANCE STATEMENT: Most previous studies related to the metabolism of the aromatase inhibitor exemestane (EXE) have focused mainly on phase I metabolic pathways and the glucuronidation phase II metabolic pathway. However, recent studies have indicated that glutathionylation is the major metabolic pathway for EXE. The present study is the first to characterize hepatic glutathione S-transferase (GST) activity against EXE and 17ß-dihydro-EXE and to identify GST α 1 and GST µ 1 as the major cytosolic GSTs involved in the hepatic metabolism of EXE.


Assuntos
Androstadienos/farmacocinética , Neoplasias da Mama , Glutationa Transferase/metabolismo , Inativação Metabólica/fisiologia , Fígado/enzimologia , Antineoplásicos Hormonais/farmacocinética , Inibidores da Aromatase/farmacocinética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Cromatografia Líquida , Cisteína/metabolismo , Citosol/metabolismo , Estrogênios/biossíntese , Glutationa Transferase/química , Eliminação Hepatobiliar/fisiologia , Humanos , Isoformas de Proteínas , Receptores de Estrogênio
5.
J Neurosci ; 41(44): 9177-9191, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34561233

RESUMO

Sex steroid hormones act on hypothalamic kisspeptin neurons to regulate reproductive neural circuits in the brain. Kisspeptin neurons start to express estrogen receptors in utero, suggesting steroid hormone action on these cells early during development. Whether neurosteroids are locally produced in the embryonic brain and impinge onto kisspeptin/reproductive neural circuitry is not known. To address this question, we analyzed aromatase expression, a key enzyme in estrogen synthesis, in male and female mouse embryos. We identified an aromatase neuronal network comprising ∼6000 neurons in the hypothalamus and amygdala. By birth, this network has become sexually dimorphic in a cluster of aromatase neurons in the arcuate nucleus adjacent to kisspeptin neurons. We demonstrate that male arcuate aromatase neurons convert testosterone to estrogen to regulate kisspeptin neuron activity. We provide spatiotemporal information on aromatase neuronal network development and highlight a novel mechanism whereby aromatase neurons regulate the activity of distinct neuronal populations expressing estrogen receptors.SIGNIFICANCE STATEMENT Sex steroid hormones, such as estradiol, are important regulators of neural circuits controlling reproductive physiology in the brain. Embryonic kisspeptin neurons in the hypothalamus express steroid hormone receptors, suggesting hormone action on these cells in utero Whether neurosteroids are locally produced in the brain and impinge onto reproductive neural circuitry is insufficiently understood. To address this question, we analyzed aromatase expression, a key enzyme in estradiol synthesis, in mouse embryos and identified a network comprising ∼6000 neurons in the brain. By birth, this network has become sexually dimorphic in a cluster of aromatase neurons in the arcuate nucleus adjacent to kisspeptin neurons. We demonstrate that male aromatase neurons convert testosterone to estradiol to regulate kisspeptin neuron activity.


Assuntos
Tonsila do Cerebelo/metabolismo , Aromatase/metabolismo , Estrogênios/biossíntese , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Neurônios/metabolismo , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/fisiologia , Animais , Aromatase/genética , Feminino , Hipotálamo/citologia , Hipotálamo/fisiologia , Kisspeptinas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia
6.
Int J Mol Sci ; 22(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808818

RESUMO

Dichlorodiphenyltrichloroethane (DDT) is the most widespread, persistent pollutant and endocrine disruptor on the planet. Although DDT has been found to block androgen receptors, the effects of its low-dose exposure in different periods of ontogeny on the male reproductive system remain unclear. We evaluate sex steroid hormone production in the pubertal period and after maturation in male Wistar rats exposed to low doses of o,p'-DDT, either during prenatal and postnatal development or postnatal development alone. Prenatally and postnatally exposed rats exhibit lower testosterone production and increased estradiol and estriol serum levels after maturation, associated with the delayed growth of gonads. Postnatally exposed rats demonstrate accelerated growth of gonads and higher testosterone production in the pubertal period. In contrast to the previous group, they do not present raised estradiol production. All of the exposed animals exhibit a reduced conversion of progesterone to 17OH-progesterone after sexual maturation, which indicates putative attenuation of sex steroid production. Thus, the study reveals age-dependent outcomes of low-dose exposure to DDT. Prenatal onset of exposure results in the later onset of androgen production and the enhanced conversion of androgens to estrogens after puberty, while postnatal exposure induces the earlier onset of androgen secretion.


Assuntos
Androgênios/biossíntese , DDT/farmacologia , Disruptores Endócrinos/farmacologia , Exposição Ambiental/efeitos adversos , Estrogênios/biossíntese , Animais , DDT/administração & dosagem , Disruptores Endócrinos/administração & dosagem , Feminino , Genitália Masculina/efeitos dos fármacos , Genitália Masculina/metabolismo , Hormônios Esteroides Gonadais/biossíntese , Gônadas/efeitos dos fármacos , Gônadas/metabolismo , Masculino , Ratos
7.
Clin Chest Med ; 42(1): 217-228, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33541615

RESUMO

Pulmonary arterial hypertension (PAH) occurs in women more than men whereas survival in men is worse than in women. In recent years, much research has been carried out to understand these sex differences in PAH. This article discusses clinical and preclinical studies that have investigated the influences of sex, serotonin, obesity, estrogen, estrogen synthesis, and estrogen metabolism on bone morphogenetic protein receptor type II signaling, the pulmonary circulation and right ventricle in both heritable and idiopathic pulmonary hypertension.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/fisiologia , Ventrículos do Coração/fisiopatologia , Hipertensão Pulmonar/fisiopatologia , Circulação Pulmonar/fisiologia , Estrogênios/biossíntese , Estrogênios/metabolismo , Feminino , Humanos , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/genética , Masculino , Obesidade/complicações , Serotonina/metabolismo , Caracteres Sexuais , Transdução de Sinais
8.
Pharmacol Res ; 165: 105435, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33485996

RESUMO

Our previous studies found that prenatal dexamethasone exposure could cause abnormal follicular development in fetal rats. This study intends to observe the transgenerational inheritance effects of ovarian estrogen inhibition in offspring exposed to dexamethasone (0.2 mg/kg • d) from gestational day 9 (GD9) to GD20 in Wistar rats, and explore the intrauterine programming mechanisms. Prenatal dexamethasone exposure reduced the expression of ovarian cytochrome P450 aromatase (P450arom), the level of serum estradiol (E2) and the number of primordial follicles, while increased the number of atresia follicles before and after birth in F1 offspring rats. At the same time, the expression of miRNA320a-3p in F1 ovaries was down-regulated, and RUNX2 expression increased significantly. These changes were continued to F2 and F3 generations, accompanied by consistently down-regulated miRNA320a-3p expression in oocyte of F1 and F2 adult offspring. In vitro, fetal rat ovaries and KGN human ovarian granulosa cells were treated with dexamethasone. It showed that dexamethasone decreased miRNA320a-3p and P450arom expression, as well as E2 synthesis, and increased RUNX2 expression. All these effects could be reversed by the GR antagonist RU486. The overexpression of miRNA320a-3p in vitro could also reverse the effects of dexamethasone on RUNX2, P450arom, and E2 levels. The dual-luciferase reporter gene experiment further confirmed the direct targeted regulation of miRNA320a-3p on RUNX2. These results indicate that prenatal dexamethasone exposure induces ovarian E2 synthesis inhibition mediated by the GR/miRNA320a-3p/RUNX2/P450arom cascade signal in fetal rat ovary, which has transgenerational inheritance effects and may related to the inhibited miRNA320a-3p expression in oocyte.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/biossíntese , Dexametasona/toxicidade , Estrogênios/biossíntese , MicroRNAs/sangue , Ovário/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Animais Recém-Nascidos , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Glucocorticoides/toxicidade , Humanos , MicroRNAs/antagonistas & inibidores , Ovário/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Ratos Wistar , Inibidores da Síntese de Esteroides/toxicidade
9.
Exp Anim ; 70(1): 63-72, 2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32981898

RESUMO

Aromatase, an estrogen synthase, exists in the gastric parietal cells of Wistar rats. The stomach synthesizes large amounts of estrogens and secretes them into the portal vein. We have been particularly studying gastric estrogen synthesis using Wistar rats. However, estrogen synthesis in the stomach of Sprague-Dawley (SD) rats, which are used as frequently as those of the Wistar strain, has not been clarified. We examined steroid synthesis in the stomach of SD rats using immunohistochemistry, in situ hybridization, Western blotting, real-time PCR, and LC-MS/MS. Aromatase also exists in the stomach of SD rats. Its distribution was not found to be different from that of Wistar rats. Results show that H+/K+-ATPase ß-subunit and aromatase colocalized in double immunofluorescence staining. Each steroid synthase downstream from progesterone was present in the gastric mucosa. These results suggest that steroid hormones are synthesized in the parietal cells in the same pathway as Wistar rats. Although mRNA expression of steroid synthases were higher in SD, no significant difference was found in the amount of protein and each steroid hormone level in the portal vein. Although differences between strains might exist in steroid hormone synthesis, results show that SD rats are as useful as Wistar rats for gastric estrogen synthesis experimentation.


Assuntos
Estrogênios/biossíntese , Células Parietais Gástricas/metabolismo , Ratos Sprague-Dawley , Animais , Aromatase/genética , Aromatase/metabolismo , Aromatase/fisiologia , Estrogênios/metabolismo , Mucosa Gástrica/citologia , Mucosa Gástrica/enzimologia , Mucosa Gástrica/metabolismo , Expressão Gênica , Masculino , Células Parietais Gástricas/enzimologia , Veia Porta/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar
10.
Am J Obstet Gynecol ; 224(3): 278.e1-278.e14, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32835719

RESUMO

BACKGROUND: Obesity is a well-known risk factor for endometrial cancer, but the mechanisms of obesity-related carcinogenesis are not well defined, particularly for premenopausal women. With the continuing obesity epidemic, increases in the incidence of endometrial cancer and a younger age of diagnosis are often attributed to a hyperestrogenic state created by hormone production in adipose tissue, but significant knowledge gaps remain. The balance of estrogen-responsive signals has not been defined in the endometrium of premenopausal women with obesity, where obesity may not create hyperestrogenism in the context of ovaries being the primary source of estrogen production. Obesity is associated with a state of low-grade, chronic inflammation that can promote tumorigenesis, and it is also known that hormonal changes alter the immune microenvironment of the endometrium. However, limited research has been conducted on endometrial immune-response changes in women who have an increased risk for cancer due to obesity. OBJECTIVE: Endometrial estrogen-regulated biomarkers, previously shown to be dysregulated in endometrial cancer, were evaluated in a cohort of premenopausal women to determine if obesity is associated with differences in the biomarker expression levels, which might reflect an altered risk of developing cancer. The expression of a multiplexed panel of immune-related genes was also evaluated for expression differences related to obesity. STUDY DESIGN: Premenopausal women with a body mass index of ≥30 kg/m2 (n=97) or a body mass index of ≤25 kg/m2 (n=33) were prospectively enrolled in this cross-sectional study, which included the assessment of serum metabolic markers and a timed endometrial biopsy for pathologic evaluation, hormone-regulated biomarker analysis, and immune response gene expression analysis. Medical and gynecologic histories were obtained. Endometrial gene expression markers were also compared across the body mass index groups in a previous cohort of premenopausal women with an inherited cancer risk (Lynch syndrome). RESULTS: In addition to known systemic metabolic differences, histologically normal endometria from women with obesity showed a decrease in gene expression of progesterone receptor (P=.0027) and the estrogen-induced genes retinaldehyde dehydrogenase 2 (P=.008), insulin-like growth factor 1 (P=.016), and survivin (P=.042) when compared with women without obesity. The endometrial biomarkers insulin-like growth factor 1, survivin, and progesterone receptor remained statistically significant in multivariate linear regression models. In contrast, women with obesity and Lynch syndrome had an increased expression of insulin-like growth factor 1 (P=.017). There were no differences in endometrial proliferation, and limited endometrial immune differences were observed. CONCLUSION: When comparing premenopausal women with and without obesity in the absence of endometrial pathology or an inherited cancer risk, the expression of the endometrial biomarkers does not reflect a local hyperestrogenic environment, but it instead reflects a decreased cancer risk profile that may be indicative of a compensated state. In describing premenopausal endometrial cancer risk, it may be insufficient to attribute a high-risk state to obesity alone; further studies are warranted to evaluate individualized biomarker profiles for differences in the hormone-responsive signals or immune response. In patients with Lynch syndrome, the endometrial biomarker profile suggests that obesity further increases the risk of developing cancer.


Assuntos
Estrogênios/sangue , Obesidade/sangue , Pré-Menopausa/sangue , Adulto , Biomarcadores/sangue , Estudos de Coortes , Estudos Transversais , Neoplasias do Endométrio/epidemiologia , Neoplasias do Endométrio/etiologia , Endométrio/metabolismo , Endométrio/patologia , Estrogênios/biossíntese , Feminino , Humanos , Obesidade/complicações , Fatores de Risco
11.
Cancer Med ; 9(23): 9081-9095, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33002342

RESUMO

Estrogen-dependent cancers (breast, endometrial, and ovarian) are among the leading causes of morbidity and mortality in women worldwide. Aromatase is the main enzyme that catalyzes the biosynthesis of estrogen, which drives proliferation, and antiestrogens can inhibit the growth of these estrogen-dependent cancers. Hu-17, an aromatase inhibitor, is a novel small-molecule compound that suppresses viability of and promotes apoptosis in ovarian cancer cells. Therefore, this study aimed to predict targets of Hu-17 and assess its intracellular signaling in ovarian cancer cells. Using the Similarity Ensemble Approach software to predict the potential mechanism of Hu-17 and combining phospho-proteome arrays with western blot analysis, we observed that Hu-17 could inhibit the ERK pathway, resulting in reduced estrogen synthesis in KGN cells, a cell line derived from a patient with invasive ovarian granulosa cell carcinoma. Hu-17 reduced the expression of CYP19A1 mRNA, responsible for producing aromatase, by suppressing the phosphorylation of cAMP response element binding-1. Hu-17 also accelerated aromatase protein degradation but had no effect on aromatase activity. Therefore, Hu-17 could serve as a potential treatment for estrogen-dependent cancers albeit further investigation is warranted.


Assuntos
Antineoplásicos Hormonais/farmacologia , Inibidores da Aromatase/farmacologia , Aromatase/metabolismo , Estrogênios/biossíntese , Tumor de Células da Granulosa/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Fator 2 Ativador da Transcrição/metabolismo , Apoptose/efeitos dos fármacos , Aromatase/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Tumor de Células da Granulosa/enzimologia , Tumor de Células da Granulosa/patologia , Humanos , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/patologia , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Transdução de Sinais
12.
Dev Neurobiol ; 80(7-8): 239-262, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32961623

RESUMO

Brain sexual differentiation is a developmental process leading to the establishment of stable neural sex differences. In birds and rodents, this process is largely driven by estrogens during a critical period. In rodents, estrogens drive the masculinization of the brain, a process that partly depends on microglia. In contrast, in birds, estrogens produced by females induce demasculinization, but whether microglia are involved in this process is unknown. This study assessed whether microglial number, morphology, and/or activity differ between the sexes in selected regions of the developing quail brain and whether they are influenced by estrogens. We found a robust female-biased sex difference in microglial numbers between embryonic day 9 and 12 in the medial preoptic nucleus (POM), a key region for the expression of male sexual behavior. This difference relies on estrogens produced during the sensitive period. Although most embryonic microglia express iNOS, the expression of iNOS in individual microglia does not differ between sexes. Finally, microglial number and the expression of iNOS were not affected by the microglia inhibitor minocycline. Together, these results revealed an estrogen-dependent sex difference in microglia during the critical period for the sexual differentiation of the quail brain. This difference mirrors the different role of estrogens in the development of birds and rodents and suggests a role for microglia in the sexual differentiation of the brain of birds, as in rodents, thus supporting the hypothesis of a conserved role of the neuroimmune system in the organization of the brain by estrogens.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Estrogênios/biossíntese , Microglia/metabolismo , Caracteres Sexuais , Animais , Animais Recém-Nascidos , Encéfalo/embriologia , Coturnix , Feminino , Masculino , Óxido Nítrico Sintase Tipo II/biossíntese
13.
Am J Clin Pathol ; 154(6): 837-847, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32880620

RESUMO

OBJECTIVES: Mucinous cystic neoplasm of the liver is characterized by neoplastic mucinous and/or biliary epithelium surrounded by ovarian-type stroma. Immunohistochemical studies have shown that the ovarian-type stroma expresses estrogen receptor, suggesting potential hormonal responsiveness. The molecular biology of mucinous cystic neoplasm of the liver remains poorly studied. METHODS: Transcriptome sequencing and immunohistochemistry were performed on a series of mucinous cystic neoplasms. RESULTS: Mucinous cystic neoplasm of the liver exhibited significantly increased RNA expression of ovarian stromal markers WT1, PR, and ER2 and sex cord stromal markers SF-1, inhibin-α, and calretinin compared with nonneoplastic liver. Immunohistochemistry confirmed the RNA-level data. Evidence for sex hormone biosynthesis was identified by significant overexpression of multiple estrogen biosynthetic enzymes. Expression of 17ß-hydroxysteroid dehydrogenase 1 was confirmed immunohistochemically. Pathway analysis also identified significant upregulation of the hedgehog and Wnt pathways and significant downregulation of T-helper 1 and T-helper 2 pathways. CONCLUSIONS: Mucinous cystic neoplasm of the liver recapitulates ovarian stroma at the morphologic, DNA, RNA, and protein levels. These data support the concept that this tumor likely arises from ectopic primitive gonadal tissue and/or stromal cells with capacity to transdifferentiate to ovarian cortical cells.


Assuntos
Cistadenoma Mucinoso/química , Cistadenoma Mucinoso/genética , Perfilação da Expressão Gênica , Neoplasias Hepáticas/química , Neoplasias Hepáticas/genética , Biomarcadores Tumorais/análise , Cistadenoma Mucinoso/patologia , Análise Mutacional de DNA , Estrogênios/biossíntese , Estrogênios/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Imunofenotipagem , Fígado/patologia , Neoplasias Hepáticas/patologia , Ovário/patologia , Análise de Sequência de DNA , Células Estromais/patologia , Via de Sinalização Wnt/genética
14.
Int J Mol Sci ; 21(16)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781535

RESUMO

Aromatase inhibitors (AIs) have radically changed the prognosis of hormone receptor positive breast cancer (BC) in post-menopausal women, and are a mainstay of the adjuvant therapy for BC after surgery in place of, or following, Tamoxifen. However, AIs aren't side effect-free; frequent adverse events involve the musculoskeletal system, in the form of bone loss, AI-associated arthralgia (AIA) syndrome and autoimmune rheumatic diseases. In this narrative review, we reported the main clinical features of these three detrimental conditions, their influence on therapy adherence, the possible underlying molecular mechanisms and the available pharmacological and non-pharmacological treatments. The best-known form is the AIs-induced osteoporosis, whose molecular pathway and therapeutic possibilities were extensively investigated in the last decade. AIA syndrome is a high prevalent joint pain disorder which often determines a premature discontinuation of the therapy. Several points still need to be clarified, as a universally accepted diagnostic definition, the pathogenetic mechanisms and satisfactory management strategies. The association of AIs therapy with autoimmune diseases is of the utmost interest. The related literature has been recently expanded, but many issues remain to be explored, the first being the molecular mechanisms.


Assuntos
Inibidores da Aromatase/efeitos adversos , Doenças Musculoesqueléticas/induzido quimicamente , Animais , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Ensaios Clínicos como Assunto , Estrogênios/biossíntese , Estrogênios/metabolismo , Feminino , Humanos , Doenças Musculoesqueléticas/patologia , Doenças Musculoesqueléticas/fisiopatologia
15.
Actual. osteol ; 16(2): 140-153, mayo.-ago. 2020. ilus, graf
Artigo em Espanhol | LILACS | ID: biblio-1129814

RESUMO

La osteoporosis y las enfermedades cardiovasculares son patologías prevalentes en mujeres posmenopáusicas. La calcificación vascular es un proceso en el que se produce una distorsión de la arquitectura natural del tejido arterial con una transformación símil osteogénica. La fisiología vascular y la osteogénesis (formación y remodelación ósea) comparten una complejidad metabólica y funcional crítica, que ha sido poco explorada en forma conjunta, lo que ha impulsado la concepción del Eje Óseo-Vascular como nueva área de investigación, con una visión de estudio integradora con la finalidad de identificar vínculos entre ambos sistemas. En virtud de la controversia planteada sobre los riesgos/beneficios de la terapia de reemplazo hormonal para prevenir enfermedades asociadas a la menopausia, se ha incentivado la búsqueda de nuevas opciones de tratamiento. Los fitoestrógenos, como compuestos nutracéuticos, surgen como una potencial alternativa terapéutica. En particular, las isoflavonas presentan gran analogía estructural con el estrógeno humano 17ß-estradiol, lo que les permite unirse al receptor de estrógenos e inducir acciones estrogénicas tanto en células animales como humanas. Basado en la experiencia propia como en lo reportado en la bibliografía, este artículo analiza la información disponible sobre las acciones vasculares y óseas de los fitoestrógenos (específicamente la isoflavona genisteína), con una visión de ciencia traslacional. Es de esperar que los avances en el conocimiento derivado de la ciencia básica, en un futuro cercano, pueda contribuir a decisiones clínicas a favor de promover terapias naturales de potencial acción dual, para la prevención de enfermedades de alta prevalencia y significativo costo social y económico para la población. (AU)


Osteoporosis and cardiovascular diseases are prevalent diseases in postmenopausal women. Vascular calcification is a cellmediated process that leads to the loss of the natural architecture of the arterial vessels due to osteogenic transdifferentiation of smooth muscle cells, and matrix mineralization. Vascular physiology and osteogenesis (bone formation and remodeling) share a critical metabolic and functional complexity. Given the emerging integrative nature of the bonevascular axis, links between both systems are a matter of ongoing interest. In view of the controversy stated about the risks/benefits of hormone replacement therapy to prevent diseases associated with menopause, phytoestrogens arise as a potential natural therapeutic alternative. In particular, isoflavones have a strong structural analogy with the human estrogen 17ß-estradiol, that allows them to bind to the estrogen receptor and induce estrogenic actions in animal and human cells. Based in on our own experience and the information available in the literature, in this paper we provide an overview of the role of phytoestrogens on vascular and bone tissues, with focus on Genistein actions. We wish that the basic knowledge acquired may contribute to guide clinical decisions for the promotion of natural therapies for the treatment of diseases that conspire against human health. (AU)


Assuntos
Humanos , Masculino , Feminino , Osteogênese/efeitos dos fármacos , Fitoestrógenos/uso terapêutico , Aterosclerose/tratamento farmacológico , Calcificação Vascular/tratamento farmacológico , Osteogênese/fisiologia , Menopausa , Doenças Cardiovasculares/complicações , Osteoporose Pós-Menopausa , Remodelação Óssea , Genisteína/uso terapêutico , Fitoestrógenos/classificação , Fitoestrógenos/farmacologia , Aterosclerose/fisiopatologia , Estrogênios/biossíntese , Calcificação Vascular/fisiopatologia , Calcificação Vascular/metabolismo
16.
Genes (Basel) ; 11(5)2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365901

RESUMO

H3K27me3 is an epigenetic modification that results in the repression of gene transcription. The transcription factor RUNX1 (the runt-related transcription factor 1) influences granulosa cells' growth and ovulation. This research uses ELISA, flow cytometry, EDU, ChIP-PCR, WB and qPCR to investigate steroidogenesis, cell apoptosis, and the proliferation effect of RUNX1 in porcine granulosa cells (pGCs) as regulated by H3K27me3. Decreased H3K27me3 stimulates the expression of steroidogenesis-related genes, including CYP11A1, PTGS2, and STAR, as well as prostaglandin. H3K27me3 transcriptionally represses RUNX1 here, whereas RUNX1 acts as an activator of FSHR, CYP11A1, and CYP19A1, promoting the production of androgen, estrogen, and prostaglandin, as well as increasing anti-apoptotic and cell proliferation activity, but decreasing progesterone. Both the complementary recovery of the H3K27me3 antagonist with the siRUNX1 signal, and the H3K27me3 agonist with the RUNX1 signal to maintain RUNX1 lead to the activation of CYP19A1, ER1, HSD17ß4, and STAR here. Androgen and prostaglandin are significantly repressed but progesterone is markedly increased with the antagonist and siRUNX1. Prostaglandin is significantly promoted with the agonist and RUNX1. Furthermore, H3K27me3-RUNX1 affects the anti-apoptotic activity and stimulation of proliferation in pGCs. The present work verifies the transcriptional suppression of RUNX1 by H3K27me3 during antral follicular development and maturation, which determines the levels of hormone synthesis and cell apoptosis and proliferation in the pGC microenvironment.


Assuntos
Proliferação de Células/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Histona Desmetilases com o Domínio Jumonji/genética , Esteroides/biossíntese , Apoptose/genética , Estrogênios/biossíntese , Estrogênios/genética , Feminino , Hormônio Foliculoestimulante/biossíntese , Hormônio Foliculoestimulante/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Células da Granulosa/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Ovulação/genética , Progesterona/biossíntese , Progesterona/genética , RNA Mensageiro/genética , Esteroides/metabolismo
17.
Fitoterapia ; 143: 104601, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32344003

RESUMO

Viburnumfocesides A - D, four undescribed 1-O-isovaleroylated iridoid 11-O-allosides modified with (Z / E)-p-coumaric acid, were isolated from the aqueous EtOH extract of the twigs of Viburnum foetidum var. ceanothoides, together with seven known natural products. Their structures were identified on the basis of the spectroscopic data interpretation and chemical derivation studies. Cell-based estrogen biosynthesis assays indicated that viburnumfoceside D (4), (2S,3R)-2,3-dihydro-3-hydroxymethyl-7-methoxy-2-(4-hydroxy-3-methoxyphenyl)-5-benzofuranpropanol-3a-O-α-L-rhamnopyranoside (8), and (-)-eriodictyol (11) inhibit estrogen biosynthesis with IC50 values of 5.8, 1.5, and 1.1 µM, respectively, in human ovarian granulosa-like KGN cells via decreasing the expression level of aromatase.


Assuntos
Inibidores da Aromatase/farmacologia , Células da Granulosa/efeitos dos fármacos , Iridoides/farmacologia , Viburnum/química , Inibidores da Aromatase/isolamento & purificação , Linhagem Celular , China , Estrogênios/biossíntese , Feminino , Humanos , Iridoides/isolamento & purificação , Estrutura Molecular , Ovário/citologia , Ovário/efeitos dos fármacos , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química
18.
Metabolism ; 107: 154241, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32304754

RESUMO

BACKGROUND: Hyperandrogenism is one of the major characteristics of polycystic ovary syndrome (PCOS). Abnormal miR-125b-5p expression has been documented in multiple diseases, but whether miR-125b-5p is associated with aberrant steroidogenesis in preantral follicles remains unknown. METHODS: Steriod hormone concentrations and miR-125b-5p expression were measured in clinical serum samples from PCOS patients. Using a mouse preantral follicle culture model and a letrozole-induced PCOS mouse model, we investigated the mechanism underlying miR-125b-5p regulation of androgen and oestrogen secretion. RESULTS: The decreased miR-125b-5p expression was observed in the sera from hyperandrogenic PCOS (HA-PCOS) patients. In mouse preantral follicles, inhibiting miR-125b-5p increased the expression of androgen synthesis-related genes and stimulated the secretion of testosterone, while simultaneously downregulating oestrogen synthesis-related genes and decreasing oestradiol release. Ectopically expressed miR-125b-5p reversed the effects on steroidogenesis-related gene expression and hormone release. Mechanistic studies identified Pak3 as a direct target of miR-125b-5p. Furthermore, inhibiting miR-125b-5p facilitated the activation of ERK1/2 in mouse preantral follicles, while inhibiting Pak3 abrogated this activating effect. These results were recapitulated in letrozole-induced PCOS mouse ovaries. Of note, inhibiting PAK3 antagonised the positive effect of miR-125b-5p siRNA on the expressions of androgen synthesis-related enzymes and testosterone secretion. Luteinizing hormone (LH) inhibited miR-125b-5p expression, and stimulated Pak3 expression. CONCLUSION: High serum LH concentrations in PCOS patients repress miR-125b-5p expression, which further increases Pak3 expression, leading to activation of ERK1/2 signalling, thus stimulating the expression of androgen synthesis-related enzymes and testosterone secretion in HA-PCOS.


Assuntos
MicroRNAs/genética , Folículo Ovariano/metabolismo , Esteroides/biossíntese , Androgênios/biossíntese , Androgênios/genética , Animais , Estradiol/metabolismo , Estrogênios/biossíntese , Estrogênios/genética , Feminino , Regulação da Expressão Gênica/genética , Hiperandrogenismo/induzido quimicamente , Hiperandrogenismo/metabolismo , Letrozol , Hormônio Luteinizante/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Endogâmicos C57BL , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo
19.
Clin Cancer Res ; 26(14): 3707-3719, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32321715

RESUMO

PURPOSE: Despite adjuvant endocrine therapy for patients with estrogen receptor alpha (ER)-positive breast cancer, dormant residual disease can persist for years and eventually cause tumor recurrence. We sought to deduce mechanisms underlying the persistence of dormant cancer cells to identify therapeutic strategies. EXPERIMENTAL DESIGN: Mimicking the aromatase inhibitor-induced depletion of estrogen levels used to treat patients, we developed preclinical models of dormancy in ER+ breast cancer induced by estrogen withdrawal in mice. We analyzed tumor xenografts and cultured cancer cells for molecular and cellular responses to estrogen withdrawal and drug treatments. Publicly available clinical breast tumor gene expression datasets were analyzed for responses to neoadjuvant endocrine therapy. RESULTS: Dormant breast cancer cells exhibited upregulated 5' adenosine monophosphate-activated protein kinase (AMPK) levels and activity, and upregulated fatty acid oxidation. While the antidiabetes AMPK-activating drug metformin slowed the estrogen-driven growth of cells and tumors, metformin promoted the persistence of estrogen-deprived cells and tumors through increased mitochondrial respiration driven by fatty acid oxidation. Pharmacologic or genetic inhibition of AMPK or fatty acid oxidation promoted clearance of dormant residual disease, while dietary fat increased tumor cell survival. CONCLUSIONS: AMPK has context-dependent effects in cancer, cautioning against the widespread use of an AMPK activator across disease settings. The development of therapeutics targeting fat metabolism is warranted in ER+ breast cancer.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Inibidores da Aromatase/farmacologia , Neoplasias da Mama/terapia , Sobrevivência Celular/efeitos dos fármacos , Metformina/farmacologia , Animais , Inibidores da Aromatase/uso terapêutico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quimioterapia Adjuvante/métodos , Estrogênios/biossíntese , Feminino , Humanos , Metformina/uso terapêutico , Camundongos , Terapia Neoadjuvante/métodos , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Clin Nucl Med ; 45(7): e320-e322, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32332298

RESUMO

A 78-year-old woman was referred to the gynecologic outpatient department because she was suspected of having ovarian cancer based on an imaging study performed during a general medical examination. Further examination using F-FDG PET/CT revealed a bulky mass lesion with low FDG avidity, as well as surprisingly strong bilateral breast radiotracer uptake despite the patient's age. Thus, an estrogen-producing tumor was suspected. Bilateral salpingo-oophorectomy was performed, and surgical pathology diagnosed the tumor as clear cell carcinoma of the ovary.


Assuntos
Adenocarcinoma de Células Claras/diagnóstico por imagem , Adenocarcinoma de Células Claras/metabolismo , Estrogênios/biossíntese , Fluordesoxiglucose F18 , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Adenocarcinoma de Células Claras/patologia , Idoso , Estrogênios/metabolismo , Feminino , Humanos , Neoplasias Ovarianas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...